Even Vertex Gracefulness of Book B_n when n is Odd

Manisha M. Acharya
Associate Professor of Mathematics & Head of department of Mathematics, M.D. College, Mumbai, Maharashtra, India

Abstract

Labeling of a graph G is an assignment of integers either to the vertices of G or edges of G or both subject to certain conditions. The labeling is considered as an Injective map either from set of vertices of G to a set of integers or from set of edges of G to a set of integers. A graph is Even vertex graceful if there exists an injective map $f : E(G) \to \{1, 2, \ldots, 2q\}$ so that the induced map $f^+ : V(G) \to \{0, 2, 4, \ldots, 2k-2\}$ defined by $f^+(x) = \sum f(xy) \pmod{2k}$ where the sum runs over all edges xy through y and $k = \max(p, q)$ be such that all vertices get distinct labels. In this paper it is proven that Book B_n is even vertex graceful when n is odd.

KEYWORDS – Book, Even vertex gracefulness, Induced Vertex labeling, Labeling of graphs.

Introduction

Let $G = (V, E)$ be a simple graph with a finite non empty set V of p vertices together with set E of q unordered pairs of distinct points of V. Each pair $e = (u_1, u_2)$ of points in E is an edge of G. A graph with p vertices and q edges is called a (p, q) graph. A graph is said to be of order p. [4]

Definition : A map $f : V(G) \to \{0, 1, 2, \ldots, q\}$ is called a graceful labeling if f is one – to – one and the edges receive all the labels from 1 to q where the label of an edge is the absolute value of the difference between vertex labels at its ends. A graph having a graceful labeling is called a graceful graph. [2]

Definition : A graph is Even vertex graceful if there exists an injective map $f : E(G) \to \{1, 2, \ldots, 2q\}$ so that the induced map $f^+ : V(G) \to \{0, 2, 4, \ldots, 2k-2\}$ defined by $f^+(x) = \sum f(xy) \pmod{2k}$ where the sum runs over all edges xy through y and $k = \max(p, q)$ gives distinct labels to all vertices in G. [5]

Definition: Let G_1 and G_2 be two graphs with vertex sets V_1 and V_2. Then Cartesian products of G_1 and G_2 is denoted by $G_1 \times G_2$. To define the product $G_1 \times G_2$, consider any two points $u = (u_1 , u_2)$ and $v=(v_1, v_2)$ in $V = V_1 \times V_2$. Then u and v are adjacent in $G_1 \times G_2$ Whenever $u_1 = v_1$ and u_2 adj v_2 or $u_2 = v_2$ and u_1 adj v_1[4]

Definition : For $n \geq 3$ the Book B_n is the cartesian product $S_n \times K_2$ where S_n is the star with n end – vertices and K_2 is the complete graph with 2–vertices. [4]

The author has used the terminology and notations of Harary [4]. So, for terms not defined here and notations not explained here refer to Harary [4]

The author has also proven “Even vertex gracefulness of book B_n when n is even”[7]

MAIN RESULT :
Theorem: For an odd integer \(n \geq 3 \), book \(B_n \) is even vertex graceful.

Proof: Here \(B_n \) is a book with 'n' number of pages. It is an open book with \((n+1)/2\) number of pages on left handside and \((n-1)/2\) number of pages on right hand side.

Number of vertices in \(B_n = |V(B_n)| = p = 2n + 2 \).

Number of edges in \(B_n = |E(B_n)| = q = 3n + 1 \).

Let \(V(B_n) = \{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n, A, B\} \) and \(E(B_n) = \{e_1, e_2, \ldots, e_{3n+1}\} \).

The middle edge of the first page is numbered as \(e_1 \), then lower edge by \(e_2 \) and upper edge by \(e_3 \). The first \((n - 1)/2 \) pages contain edges numbered with \(\{e_1, e_2, e_3, \ldots, e_{3n-3}\} \) and last \((n - 3)/2 \) pages contain edges numbered with \(\{e_{(3n-1)/2}, e_{(3n+1)/2}, \ldots, e_{3n-6}\} \).

The middle two pages contain edges \(\{e_{3n-5}, e_{3n-4}, \ldots, e_{3n}\} \). The middle edge of the book is numbered as \(e_{3n+1} \).

Upper end vertices of pages are numbered as \(a_1, a_2, \ldots, a_n \) and vertices at the lower end of pages are numbered as \(b_1, b_2, \ldots, b_n \) such that edges incident at \(a_i \) are \(\{e_{3i-2}, e_{3i}\} \) and edges incident at \(b_i \) are \(\{e_{3i-2}, e_{3i-1}\} \) for all \(1 \leq i \leq n \). The vertex where all edges \(e_{3i}, (1 \leq i \leq n) \) and \(e_{3n+1} \) meet is denoted by \(A \). The vertex where all \(e_{3i-1}, (1 \leq i \leq n) \) and \(e_{3n+1} \) meet is denoted by \(B \).

Figure 1 shows numbering of Book \(B_7 \).

Let the map \(f : E(B_n) \to \{1, 2, \ldots, 6n + 2\} \) denote labeling of edges Define \(f(e_{3n+1}) = 1 \) and \(f(e_i) = 2i + 1 \) for \(1 \leq i \leq 3n-6 \). Then the induced map \(f'(u) = \sum f(uv) \mod 6n+2 \) where the sum runs over all edges \(uv \) through \(v \) defines vertex labeling. Clearly distinct labels are used for edges \(e_1, e_2, \ldots, e_{3n-6} \) and \(e_{3n+1} \). They are \(3, 5, 7, \ldots, 6n-11 \).
and 1 respectively. Hence induced vertex labels for \(a_1, a_2, \ldots, a_{n-2}\) are 10, 22, \ldots, 12n – 50, 12n – 38, 12n – 26 (mod 6n+2) respectively.

Similarly induced vertex labels for \(b_1, b_2, \ldots, b_{n-3}, b_{n-2}\) are 8, 20, \ldots, 12n – 52, 12n – 40, 12n – 28 (mod 6n+2) respectively.

For the labeling of remaining six edges namely \(e_{3n-5}, e_{3n-4}, e_{3n-3}, e_{3n-2}, e_{3n-1}\), and \(e_{3n}\), three different cases are considered viz: \(n \equiv 1,3,5 \pmod{6}\)

The case : \(n \equiv 1 \pmod{6}\)

For first three edges, that is, \(e_{3n-5}, e_{3n-4}\) and \(e_{3n-3}\) The function \(f\) is \(f(e_i) = 2i + 1\) for \(3n-5 \leq i \leq 3n-3\) and for remaining three edges, a function is defined as \(f(e_{3n-2}) = 6n + 1\; ;\)

\(f(e_{3n-1}) = 6n -3; f(e_{3n}) = 6n - 1\)

Hence induced vertex labels for \(a_{n-1}, a_n\) are 12n – 14, 12n (mod 6n + 2) respectively. Also, induced vertex labels for \(b_{n-1}, b_n\) are 12n-16, 12n-2, (mod 6n+2) respectively.

Lastly to determine induced vertex labeling for A and B. As mentioned earlier, edges incident at A are \(e_{3i}\) for \(1 \leq i \leq n\) and edge \(e_{3n+1}\)

Hence Induced vertex Label for A

\[\equiv \left[f(e_3) + f(e_6) + \ldots + f(e_{3n-3}) \right] + f(e_{3n}) + f(e_{3n-1}) \pmod{6n+2}\]

\[\equiv \left[7 + 13 + 19 + \ldots + (6n-5) \right] + (6n-1) + 1 \pmod{6n+2}\]

\[\equiv 3n^2 + 4n - 1 \pmod{6n+2}\]

\[\equiv 6n \pmod{6n+2}\]

Hence Induced vertex label for A = 6n

Similarly we calculate Induced vertex labeling for B.

The edges incident at B are \(e_{3i-1}\) for \(1 \leq i \leq n\) and \(e_{3n+1}\)

Then induced vertex label for B

\[\equiv \left[f(e_2) + f(e_5) + f(e_8) + \ldots + f(e_{3n-a}) \right] + f(e_{3n-1}) + f(e_{3n-1}) \pmod{6n+2}\]

\[\equiv \left[5 + 11 + 17 + \ldots + (6n-7) \right] + (6n-3) + 1 \pmod{6n+2}\]

\[\equiv 3n^2 + 2n - 1 \pmod{6n+2}\]

\[\equiv 4n \pmod{6n+2}\]

Induced vertex label for B = 4n

The case : \(n \equiv 3 \pmod{6}\)

The labeling for edges \(e_{3n-5}, e_{3n-4}\) and \(e_{3n-3}\) is similar to that of the case \(n \equiv 1 \pmod{6}\)
For remaining three edges, a function is slightly different and defined as

\[f(e_{3n-2}) = 6n - 3 ; f(e_{3n-1}) = 6n + 1; f(e_{3n}) = 6n - 1 \]

Hence induced vertex labels for \(a_{n-1} \), \(a_n \) are \(12n - 14 \), \(12n - 4 \) (mod 6n + 2) respectively.

Also induced vertex labels for \(b_{n-1} \), \(b_n \) are \(12n - 16 \), \(12n - 2 \) (mod 6n + 2) respectively.

One can observe that induced vertex labeling for \(b_{n-1} \) and \(a_{n-1} \) are same as that of earlier case, as the labeling of edges incident at these vertices are same as that of earlier case. Also induced vertex labeling for \(b_n \) remains same because edge labels for \(e_{3n-2} \) and \(e_{3n-1} \) are interchanged from that of earlier labeling.

Labeling of edges incident at vertex \(A \) is same as that of earlier case. Hence in this case also induced vertex label for \(A = 6n \)

Lastly to find induced vertex labeling for \(B \)

\[
\text{Induced vertex label for } B \equiv [f(e_3)+f(e_5)+\ldots+f(e_{3n-4})]+f(e_{3n-1})+f(e_{3n}) \pmod{6n+2}
\]

\[
\equiv 3n^2 + 2n + 3 \pmod{6n + 2}
\]

\[
\equiv 4n + 4 \pmod{6n + 2}
\]

Induced vertex label for \(B = 4n + 4 \)

The case : \(n = 5 \pmod{6} \)

In this case a function \(f \) is defined as follows:

\[f(e_{3n-5}) = 6n - 7, \ f(e_{3n-4}) = 6n - 9, \ f(e_{3n-3}) = 6n - 5, \ f(e_{3n-2}) = 6n + 1, \ f(e_{3n-1}) = 6n - 3, \ f(e_{3n}) = 6n - 1 \]

Induced vertex labels for \(a_{n-1} \) and \(a_n \) are \(12n - 12 \) and \(12n + 1 \) (mod 6n + 2) respectively.

Also induced vertex labels for \(b_{n-1} \), \(b_n \) are \(12n - 16, 12n - 2 \) (mod 6n + 2) respectively.

Lastly to calculate induced vertex labels for \(A \) and \(B \)

Induced vertex label of \(A \)

\[
\equiv [f(e_3) + f(e_5) + \ldots + f(e_{3n-6})] + [f(e_{3n-3}) + f(e_{3n})] + [f(e_{3n+1})] \pmod{6n + 2}
\]

\[
= 6n
\]

Similarly induced vertex label of \(B \)

\[
\equiv [f(e_2) + f(e_5) + \ldots + f(e_{3n-7})] + [f(e_{3n-4}) + f(e_{3n-1})] + f(e_{3n+1}) \pmod{6n + 2}
\]

\[
= 4n-2
\]

Illustration :
Figure 2 shows Even Vertex Gracefulness of Book B_9 (The case $n \equiv 3 \pmod{6}$)

Conclusion: Labels assigned to edges $e_{1}, e_{2}, \ldots, e_{3n-6}$ and e_{3n+1} are $3, 5, 7, \ldots, 6n-11$ and 1 respectively.

Hence induced vertex labels for $a_{1}, a_{2}, \ldots, a_{n-2}$ are $10, 22, \ldots, 12n - 50, 12n - 38, 12n - 26 \pmod{6n+2}$ respectively.

Similarly induced vertex labels for $b_{1}, b_{2}, \ldots, b_{n-3}, b_{n-2}$ are $8, 20, \ldots, 12n - 52, 12n - 40, 12n - 28 \pmod{6n+2}$ respectively.

For the remaining six edges e_{3n-5} to e_{3n} we considered three cases. In all three cases edge labels assigned are $6n-9, 6n-7, 6n-5, 6n-3, 6n-1, 6n+1$.

Hence induced vertex labels for $a_{n-1}, a_{n}, b_{n-1}, b_{n}, A$ and B in three different cases are respectively as follows:

- In the case $n \equiv 1 \pmod{6}$ vertex labels are $12n-14, 12n, 12n-6, 12n-2, 6n$ and $4n \pmod{6n+2}$

- In the case $n \equiv 3 \pmod{6}$ vertex labels are $12n-14, 12n-4, 12n-16, 12n-2, 6n$ and $4n + 4 \pmod{6n+2}$

- In the case $n \equiv 5 \pmod{6}$ vertex labels are $12n-12, 12n+1, 12n-16, 12n-2, 6n$ and $4n - 2 \pmod{6n+2}$
Therefore \(f \) and \(f^+ \) satisfy even vertex graceful labeling. Hence when \(n \) is odd book \(B_n \) is even vertex graceful.

References:

1) C. Barrientos and H. Hevia, On 2- Equitable Labelings Of Graphs, Research supported in part by FONDECYT project 1941219(94)

2) C. Barrientos, Odd-Graceful Labelings Of Trees Of Diameter 5, AKCE J. Graphs. Combin, 6, No. 2 (2009)

4) Harary, Graph Theory, Addison-Wesley, 1968.

7) Manisha Acharya, Even vertex gracefulness of book \(B_n \) when \(n \) is even, sent for publication.