The Class of Triangular Trees is $\boldsymbol{\delta}$-Optimal sw-sum graph but the Class of Ladders is not

Manisha Acharya ${ }^{\text {a }}$ and Ganesh Joshi ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Mathematics, Maharshi Dayanand College, Parel, Mumbai 400012
${ }^{\text {b }}$ Department of Mathematics, Maharshi Dayanand College, Parel, Mumbai 400012

Abstract

In this paper we have proved that the class of triangular tree $\mathrm{TT}(\mathrm{n}+1)$ is sw-sum graph with sw -sum number $w(T T(n+1))=1$. We have also answered the open problem "Does there exist a graph which is an sw-sum graph but not δ-optimal sw-sum graph". We have proved that $W\left(L_{n}\right)=2$ for $n \geq 7$.

KEYWORDS: sw sum, δ-optimal sw-sum graph, sw sum number, triangular trees, ladders

1. Introduction

In this paper we consider only simple undirected graphs with $\mathrm{V}(\mathrm{G})$ to be the set of vertices of graph $G \& E(G)$ to be the set of edges of graph G. A super weak sum(swsum) labelling is a bijection $\mathrm{L}: \mathrm{V}(\mathrm{G}) \rightarrow\{1,2, \ldots,|\mathrm{~V}(\mathrm{G})|\}$ such that for every edge $e=u v$ in $\mathrm{E}(\mathrm{G})$ there exist a vertex w in $\mathrm{V}(\mathrm{G})$ with $\mathrm{L}(\mathrm{u})+\mathrm{L}(\mathrm{v})=\mathrm{L}(\mathrm{w})$. A graph that can be sw-sum labelled is called sw-sum graph. The sw-sum number w(G) of a connected graph G is the least number r of isolated vertices $\overline{k_{r}}$ such that $\mathrm{H}=\mathrm{G} \mathrm{U} \overline{k_{r}}$ is an sw-sum graph. If $w(G)=\delta$ is achieved then G is called δ-optimal sw- sum graph. Imran Javaid, Fariha Khalid, Ali Ahmad \& M.Imran ${ }^{[5]}$ showed that not all graphs are sw-sum graphs and they conjectured that all graphs are δ-optimal weak sum graphs. They also posted an open problem "Does there exist a sum graph which is sw-sum graph but not δ-optimal sw-sum graph. In this paper we give the answer to an open problem and also have constructed $W\left(L_{n}\right)=2$ for $n \geq 7$.

2. Triangular Trees

We call following tree as triangular tree. The vertices are also named in the diagram. The graph and naming style of vertices can be similarly extended for $T T(n+1)$ for all natural numbers n. ${ }^{[1,4]}$

TT(3)

Now onwards for an edgee $=u v$, we mean $S(e)=L(u)+L(v)$
Theorem 1: For any odd $n, T T(n+1)$ is 1- optimal sw-sum graph.
Label the vertices of $T T(n+1)$ as follows.
For odd values of t and $1 \leq t \leq n$
Define
$L(H(t, t))=(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)$
$L(H(t+z, t))=(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(z-1)-1$
$L(H(t+z, 2(t+z)-t))=(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(z-1)-2$
Where $z=1$ to $(n+1)-t$
For even values of t and $2 \leq t \leq(n+1)$
$L(H(t, t))=\left(\frac{t}{2}-1\right)(2 n-t+3)+1$
$L(H(t+z, t))=\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(z-1)+1$
$L(H(t+z, 2(t+z)-t))=\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(z-1)+2$
Where $z=1$ to $(n+1)-t$
Partition the edges of $T T(n+1)$ as follows.
$E_{t}=\bigcup_{x=t}^{n}\{H(x, t) H(x+1, t+1), H(x, 2 x-t) H(x+1,2(x+1)-(t+1)\}$,
$B_{t}=\{H(n+1, t) H(n+1, t+1), H(n+1,2(n+1-t) H(n+1,2(n+1)-(t$
+1)) $\}$
Hence $\mathrm{E}(\mathrm{TT}(\mathrm{n}+1))=\mathrm{U}_{t=1}^{n}\left(E_{t} U B_{t}\right)$
Let $e \in E(T T(n+1))$ therefore either e $\in E_{t}$ or e $\in B_{t}$ for some natural number t such that $1 \leq t \leq n$

Case 1) If $e \in E_{t}$, then for some $z \in\{1,2, \ldots, n-t\}$ we have

$$
\begin{equation*}
e=H(t, t) H(t+1, t+1) \tag{1}
\end{equation*}
$$

Or

$$
\begin{equation*}
e=H(t+z, t) H(t+1+z, t+1) \tag{2}
\end{equation*}
$$

Or

$$
\begin{equation*}
e=H(t+z, 2(t+z)-t) H(t+1+z, 2(t+1+z)-(t+1)) \tag{3}
\end{equation*}
$$

If t is odd and e as in (1) above then

$$
\begin{aligned}
S(e) & =\left[(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)\right]+\left[\left(\frac{t+1}{2}-1\right)(2 n-(t+1)+3)+1\right] \\
& =(n+1)^{2}-t+2 \leq(n+1)^{2}+1
\end{aligned}
$$

If t is odd and e as in (2) above then

$$
\begin{aligned}
S(e)= & {\left[(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(z-1)-1\right] } \\
& +\left[\left(\frac{t+1}{2}-1\right)(2 n-(t+1)+3)+1+2(z-1)+1\right] \\
= & (n+1)^{2}-t+2 \leq(n+1)^{2}+1
\end{aligned}
$$

If t is odd and e as in (3) above then

$$
\begin{aligned}
S(e)= & {\left[(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(z-1)-2\right]+} \\
& \quad\left[\left(\frac{t+1}{2}-1\right)(2 n-(t+1)+3)+1+2(z-1)+2\right] \\
= & (n+1)^{2}-t+2 \leq(n+1)^{2}+1
\end{aligned}
$$

If t is even and e as in (1) above then

$$
\begin{aligned}
S(e) & =\left[\left(\frac{t}{2}-1\right)(2 n-t+3)+1\right]+\left[(n+1)^{2}-\left(\frac{t+1-1}{2}\right)(2 n-(t+1)+4)\right] \\
& =n^{2}+t-1<n^{2}+2 n+1=(n+1)^{2}
\end{aligned}
$$

If t is even and e as in (2) above then

$$
\begin{aligned}
S(e)= & {\left[\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(z-1)+1\right]+} \\
& \quad\left[(n+1)^{2}-\left(\frac{t+1-1}{2}\right)(2 n-(t+1)+4)-2(z-1)-1\right] \\
= & n^{2}+t-1<n^{2}+2 n+1=(n+1)^{2}
\end{aligned}
$$

If t is even and e as in (3) above then

$$
\begin{aligned}
S(e)= & {\left[\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(z-1)+2\right]+} \\
& {\left[(n+1)^{2}-\left(\frac{t+1-1}{2}\right)(2 n-(t+1)+4)-2(z-1)-2\right] }
\end{aligned}
$$

$$
=n^{2}+t-1<n^{2}+2 n+1=(n+1)^{2}
$$

Case 2) If $e \in B_{t}$, then we have
$e=H(n+1, t) H(n+1, t+1)$
Or

$$
\begin{equation*}
e=H(n+1,2(n+1)-t) H(n+1,2(n+1)-(t+1)) \tag{5}
\end{equation*}
$$

If t is odd and e as in (4) above then

$$
\begin{aligned}
S(e)= & {\left[(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(n-t+1-1)-1\right]+} \\
& \quad\left[\left(\frac{t+1}{2}-1\right)(2 n-(t+1)+3)+1+2(n-t-1)+1\right] \\
= & (n+1)^{2}-t<(n+1)^{2}
\end{aligned}
$$

If t is odd and e as in (5) as above then

$$
\begin{aligned}
S(e)= & {\left[(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(n-t+1-1)-2\right]+} \\
& {\left[\left(\frac{t+1}{2}-1\right)(2 n-(t+1)+3)+1+2(n-t-1)+2\right] } \\
= & (n+1)^{2}-t<(n+1)^{2}
\end{aligned}
$$

If t is even and e as in (4) as above then

$$
\begin{aligned}
S(e)= & {\left[\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(n+1-t-1)+1\right]+} \\
& {\left[(n+1)^{2}-\left(\frac{t+1-1}{2}\right)(2 n-(t+1)+4)-2(n-t-1)-1\right] } \\
= & (n+1)^{2}-(2 n-t)<(n+1)^{2}
\end{aligned}
$$

If t is even and e as in (5) above then

$$
\begin{aligned}
S(e)= & {\left[\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(n+1-t-1)+2\right]+} \\
& {\left[(n+1)^{2}-\left(\frac{t+1-1}{2}\right)(2 n-(t+1)+4)-2(n-t-1)-2\right] } \\
= & (n+1)^{2}-(2 n-t)<(n+1)^{2}
\end{aligned}
$$

So now we have labeled vertices of $T T(n+1)$ using the numbers from 1 to $(n+1)^{2}$ such that $S(e) \leq(n+1)^{2}$ except for $e \in E_{1}$. As discussed above it can be seen that $S(e)=(n+1)^{2}+1$ hence $T T(n+1) U \overline{K_{1}}$ is 1 sw- sum graph when the isolated vertex is labeled as $(n+1)^{2}+1$

An example of 1 sw- sum labeling of $T T(6)$ is shown below.

Theorem 2: For any even $n, T T(n+1)$ is 1- optimal sw-sum graph.
Proof: Label the vertices of $T T(n+1)$ as follows.
For odd values of t and $1 \leq t \leq n+1$
Define
$L(H(t, t))=(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)$
$L(H(t+z, t))=(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(z-1)-1$
$L(H(t+z, 2(t+z)-t))=(n+1)^{2}-\left(\frac{t-1}{2}\right)(2 n-t+4)-2(z-1)-2$
where $z=1$ to $(n+1)-t$
For even values of t and $2 \leq t \leq n$
$L(H(t, t))=\left(\frac{t}{2}-1\right)(2 n-t+3)+1$
$L(H(t+z, t))=\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(z-1)+1$
$L(H(t+z, 2(t+z)-t))=\left(\frac{t}{2}-1\right)(2 n-t+3)+1+2(z-1)+2$
where $z=1$ to $(n+1)-t$.
For any e $\in E(T T(n+1))$ it can be seen that $S(e) \leq(n+1)^{2}+1$
The proof is analogous to the theorem 1.
An example of 1 sw - sum labeling of $T T(6)$ is shown below.

$$
n=6 \text { (even) }
$$

Theorem 3: $\operatorname{TT}(n+1)$ is δ - optimal sw-sum graph.
Proof: It directly follows from theorem 1 and 2

3. sw-sum labeling of Ladder graphs ($\boldsymbol{L}_{\boldsymbol{n}}$)

For $n>2$, the ladder graphs on $2 n$ vertices is denoted by L_{n} and has $3 n-$ 2 vertices.The following is the example of ladder graph and the vertices are also named and the same style of naming vertices can be extended for bigger ladders.

(\mathbf{L}_{n})

Now we will discuss the sw-sum optimality of L_{n}.
Theorem 4: For $3 \leq n \leq 6, L_{n}$ is 1 - optimal sw-sum graphs.
Proof: The following are 1- optimal sw-sum labels for $L_{3}, L_{4}, L_{5}, L_{6}$ and hence the proof.

(L_{3})

(L_{6})

Theorem 5: For $n \geq 7, L_{n}$ is not 1-optimal sw-sum graph.
Proof: We will prove that achieving 1-optimal sw-sum labeling of L_{n} is not possible. Consider L_{n} where $n \geq 7$. If we use the label $2 n$ at any non-pendant vertex V then the at least one sum at the edge among three edges formed by the three adjacent vertices to V must be $2 n+z$ where $z>1$ then 1 -optimal sw-sum labeling of L_{n} can't be achieved. So, to attempt 1-optimal sw-sum, we label any pendant vertex as 2 n then the adjacent vertex to this vertex should be label as 1 is obvious. Now if we label the adjacent vertex of label receiving 1 as $2 n-1$, at least one of the remaining two edges at which the vertex labeled $2 n-1$ is one of its ends have the sum $2 n-1+z$ where $z>2$ will not allow us to achieve 1 -optimal sw-sum. If $2 n-1$ label is assigned to any non-adjacent vertex of the vertex receiving label 1 , then by the similar argument to the last statement we cannot achieve 1 -optimal sw-sum. Continuing in the similar way we can see that in the attempt of achieving 1 -optimal sw-sum labeling of L_{n}, the labels $2 n, 2 n-1,2 n-2,2 n-3$ must be assigned at the pendent vertex and the adjacent vertices to these vertices should be assigned the labels $1,2,3,4$ so that the sums at the respective edges must be $2 n+1$. Now if we assign $2 n-4$ to any vertex which is adjacent to the vertex receiving one of the labels $1,2,3,4$ then the sum at the edge between one of the other two adjacent edges must be $2 n-4+z$ where $z>5$. The same will happen if the label $2 n-4$ is assigned to any vertex which is not adjacent to the vertex receiving one of the labels $1,2,3,4$. Hence there is no choice to use the label $2 n-4$ by which 1- optimal sw-sum of L_{n} can be obtained.

Theorem 6: The class L_{n} is not 1-optimal sw-sum graphs.
Proof: It directly follows from the theorem 5.
Theorem 7: For all odd n such that $n \geq 7, w\left(L_{n}\right)=2$
Proof: Label L_{n} as follows.
$L\left(U_{1}\right)=n, L\left(V_{1}\right)=n+1$

For even t such that $0 \leq t \leq n-3$
$L\left(V_{n-t}\right)=2 n-t$
$L\left(U_{n-t-1}\right)=2 n-t-1$
$L\left(U_{n-t}\right)=t+1$
$L\left(V_{n-t-1}\right)=t+2$
We call the steps of the ladder as $P_{i}=V_{i+1} U_{i+1}$ where $1 \leq i \leq n-2$
Now $S\left(P_{i}\right)=L\left(V_{i+1}\right)+L\left(U_{i+1}\right)$

$$
\begin{aligned}
S\left(P_{i}\right) & =L\left(V_{n-(n-(i+1))}\right)+L\left(U_{n-(n-(i+1))}\right) \\
& =2 n-(n-(i+1))+(n-(i+1))+1 \text { if } i \text { is even, } \\
S\left(P_{i}\right) & =L\left(V_{n-(n-(i+2))-1)}\right)+L\left(U_{n-(n-(i+2))-1)}\right) \\
& =(n-(i+2))+2+2 n-(n-(i+2))-1 \text { if } i \text { is odd. }
\end{aligned}
$$

Therefore $S\left(P_{i}\right)=2 n+1 \quad$ for all $\mathrm{i}=1$ to $(\mathrm{n}-2)$
Partition the edges of the type $\left\{V_{j} V_{j+1}\right\}$ for $j=1$ to $(n-1)$ as follows.
$\left\{V_{1} V_{2}\right\},\left\{V_{2} V_{3}\right\},\left\{V_{n-t} V_{n-t-1}, V_{n-t-1} V_{n-t-2}: t\right.$ is even and $\left.0 \leq t \leq n-5\right\}$
Now $S\left(V_{1} V_{2}\right)=L\left(V_{1}\right)+L\left(V_{2}\right)=L\left(V_{1}\right)+L\left(V_{n-(n-3)-1}\right)$ $=(n+1)+(n-3)+2=2 n$
$S\left(V_{2} V_{3}\right)=L\left(V_{2}\right)+L\left(V_{3}\right)=L\left(V_{n-(n-3)-1}\right)+L\left(V_{n-(n-3)}\right)$ $=((n-3)+2)+(2 n-(n-3))=2 n+2$

For any other value of t,

$$
\begin{aligned}
S\left(V_{n-t} V_{n-t-1}\right)= & L\left(V_{n-t}\right)+L\left(V_{n-t-1}\right)=(2 n-t)+(t+2)=2 n+2 \\
S\left(V_{n-t-1} V_{n-t-2}\right) & =L\left(V_{n-t-1}\right)+L\left(V_{n-t-2}\right)=L\left(V_{n-t-1}\right)+L\left(V_{n-(t+2)}\right) \\
& =(t+2)+2 n-(t+2)=2 n
\end{aligned}
$$

Partition the edges of the type $\left\{U_{j} U_{j+1}\right\}$ for $j=1$ to $(n-1)$ as follows.
$\left\{U_{1} U_{2}\right\} \cup\left\{U_{2} U_{3}\right\} \cup\left\{U_{n-t} U_{n-t-1}, U_{n-t-1} U_{n-t-2}: t\right.$ is even and $\left.0 \leq t \leq n-5\right\}$
Now $S\left(U_{1} U_{2}\right)=L\left(U_{1}\right)+L\left(U_{2}\right)=L\left(U_{1}\right)+L\left(U_{n-(n-3)-1}\right)$

$$
=n+(2 n-(n-3)-1)=2 n+2
$$

$$
S\left(U_{2} U_{3}\right)=L\left(V_{2}\right)+L\left(V_{3}\right)=L\left(V_{n-(n-3)-1}\right)+L\left(V_{n-(n-3)}\right)
$$

$$
=(2 n-(n-3)-1)+((n-3)+1)=2 n
$$

$S\left(U_{n-t} U_{n-t-1}\right)=L\left(U_{n-t}\right)+L\left(U_{n-t-1}\right)=(t+1)+(2 n-t-1)=2 n$
$S\left(U_{n-t-1} U_{n-t-2}\right)=L\left(U_{n-t-1}\right)+L\left(U_{n-t-2}\right)=L\left(U_{n-t-1}\right)+L\left(U_{n-(t+2)}\right)$

$$
=(2 n-t-1)+(t+2)+1=2 n+2 .
$$

Therefore, for every edge e of L_{n}, we have $S(e) \leq 2 n+2$.
Hence $L_{n} U \overline{K_{2}}$ has sw- sum labeling where the two isolated vertices added are labeled as $2 n+1$ and $2 n+2$. From the theorem 5 it is clear that $w\left(L_{n}\right) \neq 1$. Therefore $1<w\left(L_{n}\right) \leq 2$ implies $w\left(L_{n}\right)=2$.

Theorem 8: For all even n such that $n \geq 7, w\left(L_{n}\right)=2$
Proof: Label L_{n} as follows.
For even t such that $0 \leq t \leq n-2$
$L\left(V_{n-t}\right)=2 n-t$
$L\left(U_{n-t-1}\right)=2 n-t-1$
$L\left(U_{n-t}\right)=t+1$
$L\left(V_{n-t-1}\right)=t+2$
The proof is analogous to theorem 7.
Theorem 9: For all natural numbers n such that $n \geq 7, w\left(L_{n}\right)=2$
Proof: It follows from theorem 7 and theorem 8.

Future Scope

Triangular trees $\mathrm{TT}(\mathrm{n}+1)$ can be considered for more labels.

References:

1. S.D.Deo, Ganesh Vishwas Joshi (2015), Conjecture for Lower Bounds of Achromatic Indices of Specially Constructed Trees. International Journal ofMultidisciplinary Approach and Studies Volume 2, Issue 5, 27-32.
2. Gallian J., (2019). A dynamic survey of graph labeling. Electron. J. Comb. DS6:1-533.
3. G Sethuraman, K.M. Shermily. Anti-magic labeling of new classes of trees. AKCEInternational Journal of Graphs and Combinatorics Vol18, 2021 Issue 2.
4. Manisha Acharya, Ganesh Joshi, Anti-magic labeling of Triangular Trees, Online International Interdisciplinary Research Journal, \{Bi-Monthly\}, ISSN 2249-9598, Volume-11, Oct 2021 Special Issue, 5-11.
5. http://imar.ro/journals/Mathematical_Reports/Pdfs/2014/3/4.pdf
